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Setting and Motivation

• Setting: English language learning.

• Learners write English text.

• Teachers write written corrective feedback (WCF).

3

Challenges:

• Labor-intensive.

• Access to instructors is not equal.

Run every day is good for your health.

“Run” is a verb, so you can’t use it as the subject. 
Change it to a noun by using the –ing form.

Can we automate this?
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Existing Systems: Writing Assistance Software

• Feedback from tools like Grammarly focuses on revision, not learning.

• All feedback includes “click-to-fix” direct corrections.

• Meanwhile, teachers use a variety of strategies based on context, not just direct corrections.
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One-Click Solution

Run every day is good for your health.Ex.

Very general 
resource (verbs)
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The Feedback Cycle

• Effective learning involves a cycle: Attempt → Feedback → Reflection → New Attempt.

• Teachers infer a knowledge gap and choose whether and how to intervene.

• Instead of giving the answer, they may provide a hint to encourage reflection and self-correction.

◦ This is where the writing assistants are misaligned.
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Modeling the Teacher's Choices

• How do we build automated WCF systems that can align with teacher practices?

• Our Approach: 

◦ Explicitly annotate data with the factors that influence teachers.

◦ Use this information when generating feedback.

• We selected two key factors to focus on in this study:

◦ Error Type (e.g., conditionals vs. spelling)

◦ Error Generalizability (Is the error based on a rule?)

- See “Treatability” (Ferris 1999)

• For feedback comments, we focus on aligning the use of hints vs. direct corrections.
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Feedback Generation with Our Approach
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Feedback Generation with Our Approach
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Feedback Generation with Our Approach
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Annotation Challenges

• Generalizability: Somewhat inconsistent lists in the literature; No known accessible dataset

• Error Type: Granularity and scope issues:
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I brought an extra one just __ be safe.

• Our goal: Target the underlying learning gap for the most effective feedback.

• Labels should be useful as keywords and sufficiently informative.

InfinitiveMissing Particle PurposeVerb Form

Abstraction
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Existing Typologies

• Established Typologies like ERRANT are great for Grammatical Error Correction (GEC)

• Focuses on edit operations and parts of speech (e.g., "Missing Preposition").

• However, this doesn't specify the underlying grammatical pattern the learner struggled with.

• We need a typology designed for error-to-feedback, rather than just error-to-correction.
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A New Typology

• We created a new, hierarchical error typology for this task.

• Targets the perceived language knowledge gap behind an error.

• Tag names align with terms familiar to teachers and textbooks - can serve as hooks to link to resources.

17Steven Coyne et al., AIED 2025, 2025-07-25



18

Annotation Process

• Two annotators with 5+ years of English teaching experience each annotate 456 instances.

• Base corpus: EXPECT (Fei et al., 2023), based on W&I (Yannakoudakis et al., 2018).

• Example of an annotation:
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Annotation Process: Agreement

• Annotated the instances in three batches, refining guidelines between each batch.

• Agreement scores consistently improved for all annotation types.

• Suggests the framework is well-defined and can be applied consistently

• Dataset and full guidelines are available online in the appendix.
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Experiment: Can an LLM Generate Good Feedback? 

• Goal: Use our annotated data to guide an LLM (GPT-4o) in generating feedback.

• Simplified Setup: We provide the model with "oracle" information:

◦ The original sentence & its correction.

◦ The highlighted error location.

◦ The ground-truth error type.

• This isolates the final feedback generation step when comparing systems.

• Half the data is ”train” (usable for few-shot examples), and half is “test” (can include unseen error types)
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Systems/Pipelines Used

• Three Keyword-Guided Systems

◦ Prompt includes an error tag.

◦ Tags used: Ours, ERRANT, or EXPECT.

• Keyword-Free System

◦ Prompt has no error tag; a baseline.

• Template-Guided System

◦ Uses our error tags to select and fill a pre-written template.

• All systems use a few-shot approach with 2-4 examples.

22

Learning English gives the ability in live abroad.

Learning English gives the ability to live abroad.

in

to

ERRANT Tag Our Tag EXPECT Tag

InfinitiveReplace Particle Preposition
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The Template-Guided System

• Step 1: Manually group feedback comments from our training data by error tag.

• Step 2: Identify common patterns ("archetypes") and write a fillable template for each.

• Step 3: At inference time, the LLM selects the best template for a given error and fills in the blanks

◦ If no template is appropriate, it should select "None"
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Human Evaluation

• Raters: Four experienced English teachers (≥7 years experience). Two per instance (2312 ratings).

• Rated feedback from all systems (plus the original human-written feedback) in a blind setting.

• 1-5 Likert scale for quality, plus factuality, relevance, comprehensibility, and directness judgements.
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Results: Feedback Quality

• All systems performed well, with mean scores between 4.18 and 4.50 (out of 5).

• Keyword-guided and keyword-free systems were rated comparably to human-written feedback.

• No toxic or inappropriate outputs were generated.
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Results: Does the Typology Matter?

• No significant difference in quality ratings between the three keyword typologies

• Hypothesis: The base LLM may be powerful enough to infer the core issue from the text itself, making it 
less sensitive to the specific keyword provided.
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Results: Directness Alignment

• Humans: Provided hints in 40.9% of cases, mostly for generalizable errors.

• Keyword/Keyword-Free AI: Almost always gave direct corrections (0-3% hints).

• Result: The models did not replicate human hint-giving behavior, despite prompting, showing a strong bias 

towards direct corrections for all errors.
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Results: Template System Performance

• The template system more closely matched human behavior, providing hints in 39.8% of cases. 

• It also had the highest proportion of low-quality ratings (1s and 2s)

• This was mostly due to a failure to select "None" when no template was appropriate
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Discussion

• The impact of error tags on quality ratings was seemingly minimal

◦ A good typology is still useful for e.g., grouping errors for analysis or for resource recommendations.

• GPT-4o had a strong "directness bias" not easily overcome by simple prompting.

◦ Direct feedback could be rated highly by the teachers even if written for a generalizable error.

• Templates offer more control over style and directness but can be brittle, especially around coverage gaps. 

They also require manual labor to create.

• LLMs are capable of generating pedagogically sound WCF, but there remains much work to do to fully align 

them with teacher behaviors.
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Limitations

• Did not explore adapting the feedback to the learner’s level. This is another major factor.

• The feedback style assumes a very academic learner in general – not appropriate for all learning contexts.

• The experiment used "oracle" error information, skipping challenges like isolating errors from raw text.

• Human evaluation experiments were performed with teachers, but not students.

• The creation of templates requires expert human labor, which is a scalability challenge.
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Future Work

• Explore methods to control directness without relying on templates

• Explore methods to adapt to learner level

• Implement and evaluate a fully automated pipeline (error detection → classification → feedback).

• Analyze student interactions from a real-world deployment (e.g., feedback views, revision success).
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Future Work

• Explore methods to control directness without relying on templates.

• Explore methods to adapt to learner level

• Implement and evaluate a fully automated pipeline (error detection → classification → feedback).

• Analyze student interactions from a real-world deployment (e.g., feedback views, revision success).
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Deployment Underway at Tohoku University 
with ~2000 B1-B2 student users
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Conclusions

• We introduced a framework for annotating learner errors with a focus on pedagogical feedback

• We introduced a new error typology focusing on the error-to-feedback context

• We created and released a dataset with annotations for error type, generalizability, and feedback directness

• We found that LLMs can generate feedback that teachers rate highly

• Templates were the most reliable way to control for directness, but they could be brittle
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Thank You for Listening!

• We welcome any questions you have!

• Contact: coyne.steven.charles.q2@dc.tohoku.ac.jp

• Resources available at: https://github.com/coynestevencharles/annotating-errors-wcf
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Paper Link Github Link
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